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ABSTRACT
Accurate modeling of the solvent environment for biological molecules is crucial for computational biology and drug design. A popular
approach to achieve long simulation time scales for large system sizes is to incorporate the effect of the solvent in a mean-field fashion with
implicit solvent models. However, a challenge with existing implicit solvent models is that they often lack accuracy or certain physical prop-
erties compared to explicit solvent models as the many-body effects of the neglected solvent molecules are difficult to model as a mean field.
Here, we leverage machine learning (ML) and multi-scale coarse graining (CG) in order to learn implicit solvent models that can approximate
the energetic and thermodynamic properties of a given explicit solvent model with arbitrary accuracy, given enough training data. Following
the previous ML–CG models CGnet and CGSchnet, we introduce ISSNet, a graph neural network, to model the implicit solvent potential of
mean force. ISSNet can learn from explicit solvent simulation data and be readily applied to molecular dynamics simulations. We compare the
solute conformational distributions under different solvation treatments for two peptide systems. The results indicate that ISSNet models can
outperform widely used generalized Born and surface area models in reproducing the thermodynamics of small protein systems with respect
to explicit solvent. The success of this novel method demonstrates the potential benefit of applying machine learning methods in accurate
modeling of solvent effects for in silico research and biomedical applications.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0059915

I. INTRODUCTION

The solvent environment around macromolecules often plays
a significant, sometimes even decisive, role in both the structure
and dynamics of biological systems.1–3 For example, the so-called
“hydrophobic core,” a key structural element shared by a diverse
variety of protein domains, strongly influences protein folding in
aqueous solution.4,5 The solvent also renders the protein structure
flexible enough for functional conformational changes6 and medi-
ates interactions among macromolecules for biological processes4,7

as well as drug binding.8–10

Thus, for computational investigations of biomedical prob-
lems, such as molecular dynamics (MD) simulations of biological

systems11–13 and molecular docking,14 we often seek to accurately
model effects of the solvent environment. In MD simulations, sol-
vation methods can be grouped into two major categories: explicit
and implicit. The former—as illustrated in Fig. 1(a)—incorporates
solvent molecules explicitly into the simulation system, while the
latter [see Fig. 1(b)] represents solvent effects in a mean-field
manner.11,15,16 Treating the solvent implicitly has several advan-
tages: it can speed up force calculations by drastically reducing the
number of degrees of freedom; it increases the effective time step
size in MD simulations;17 and it simplifies constant-pH simula-
tions18,19 as well as enhanced sampling approaches, such as parallel
tempering (PT)/replica-exchange MD.20,21 Moreover, implicit sol-
vent treatment is very common in structure-based drug design, such
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FIG. 1. (a) Explicit and (b) implicit solvation treatment of a biomolecular system
(here, we use capped alanine as an example).

as fragment screening and lead optimization.22,23 Some generalized
Born (GB)-based implicit solvent methods, for example, are imple-
mented in various MD software packages, such as GBSA–HCT,24

GBSA–OBC, and GBn models25 in AMBER26 and GBMV27,28 and
GBSW models29 in CHARMM.30 The authors of Ref. 31 gave a
comprehensive comparison of available implicit solvent models.

Despite their advantages, the accuracy of commonly used
implicit solvent models tends to be inadequate in certain applica-
tions, such as the calculation of solvation free energies32 or the recov-
ery of correct conformational distributions for folded and unfolded
states of proteins,33–35 thereby limiting their usage and effectiveness
in practice.

The present work addresses a long-standing question in sol-
vent modeling: is it possible to construct mean-field implicit solvent
models that reproduce the solvation thermodynamics of explicit-
solvent systems exactly? We approach this problem by parameter-
izing implicit solvent models via a machine-learned coarse grain-
ing (CG) approach. Coarse graining of molecular systems is itself
a well-researched topic, one whose aim is to model molecules
and their interactions with super-atomistic resolutions, such that
computational investigations (e.g., MD simulations) become more
efficient.36–48 A coarse grained (CG) model usually entails two
important aspects: the CG resolution and representation—that is,
the mapping of the original atoms into effective interacting groups
(also known as CG beads)39,41,42,49,50—and the CG potential, which
determines the interactions among the CG beads.39,41,42 Here, we
consider an implicit solvent system as a CG version of the explicit
solvent system—the CG mapping keeps the solute molecule(s) while
removing the solvent degrees of freedom. Once the CG mapping
has been assigned, the parameterization of a CG potential may fol-
low either a “top-down” approach; i.e., one that aims at reproducing

macroscopic experimental observations, or a “bottom-up” strategy,
which systematically integrates information from the correspond-
ing atomistic system.39 In this work, we leverage the multi-scale
coarse graining theory,51,52 a “bottom-up” approach. Essentially,
it transforms the parameterization of a CG potential into a data-
driven optimization based on the variational force matching (FM)
method.

The multi-scale coarse graining theory enables us to employ
a machine learning method similar to the CGnet introduced by
Wang et al.46 to learn an implicit solvent model, which is part of
the CG potential for the solute, for any given molecular system.
Machine learning methods have enjoyed an increase in popular-
ity and led to breakthroughs in many fields,53 including molecu-
lar sciences.54–57 For structural coarse graining, in particular, there
have been some pioneering works both for choosing optimal CG
mappings50,58 and for parameterizing CG potentials for a given
system.46,48,58–60 In this work, we adapt the architecture of CGnet46

and its extension CGSchNet48 (the latter based on a graph neu-
ral network architecture SchNet61) to the implicit solvent problem.
The resulting implicit solvent SchNet—henceforth called ISSNet—is
able to learn an implicit solvent model from coordinate and
force samples of a corresponding explicit solvent system. Trained
ISSNet models can, in turn, be used for implicit solvent simulations
of biomolecules.

Recently, machine learning methods have been applied in some
studies related to solvent environment, such as the automatable
cluster-continuum modeling of the solvent in quantum chemistry
calculations,62 for the parameterization of CG water models for
ice–water mixture63 and liquid water systems64 and for the computa-
tion of generalized Born radii in implicit solvent simulations.65 The
latter three studies are applicable to MD simulations; however, the
goal is either to achieve higher accuracy for water-only systems or
to improve the efficiency of an existing method. This work distin-
guishes itself from existing studies by introducing a neural-network-
based implicit solvent method for biomolecular MD simulations.
Additionally, we are aware of an interesting study that also inte-
grated variational coarse graining theories to the optimization of
an implicit solvent model.66 However, different from the relative
entropy method used by their work, the multiscale coarse graining
formalism enables simultaneous optimization of all parameters in
a complex neural network model without the necessity of iterative
sampling.

This paper proceeds as follows: we first describe the theoret-
ical basis of implicit solvent treatment with ISSNet as well as the
implementation, including the neural network architecture, train-
ing, and validation as well as implicit solvent simulation. In Sec. III,
we apply our proposed method to two molecular systems—capped
alanine (i.e., the solute molecule in Fig. 1) and the miniprotein
chignolin.67 We show that our method can reproduce the solvated
thermodynamics with higher accuracy than a reference implicit
solvent method, namely, the GBSA–OBC model.68 In Sec. IV, we
address the current limitation and future investigative directions of
the ISSNet method.

II. THEORY AND METHODS
Here, we introduce the potential of mean force (PMF)—a

concept from statistical mechanics—as a theoretical basis both for
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implicit solvent methods and for the multi-scale coarse graining the-
ory. After examining how a traditional approach approximates the
implicit solvent PMF, we adapt an established machine learning CG
method for parameterizing implicit solvent models based on explicit
solvent simulation data.

A. Solute PMF and solvation free energy
The concept of PMF originated in a 1935 paper by Kirkwood on

statistical treatment of fluid mixtures.69 In this subsection, we derive
the expression of a solute PMF following the framework of Ref. 70.

Suppose that we have an explicit solvent all-atom molecular
system with a total number of N atoms, consisting of Nmol solute
atoms with coordinates r (e.g., biomolecule) and (N −Nmol) sol-
vent atoms with coordinates w (e.g., water atoms and ions). Usu-
ally, an all-atom molecular mechanics force field, such as AMBER26

or CHARMM,30 formulates a molecular potential function v(r, w)
as a sum of bonded and non-bonded terms.11,13 Therefore, with-
out loss of generality, we can decompose v(r, w) into three partial
sums:70 vmol(r) for interactions solely within and between the solute
molecule(s), vw(w) for those solely within and between solvent
molecules, and vmw(r, w) for solute–solvent interactions,

v(r, w) = vmol(r) + vw(w) + vmw(r, w). (1)

We will refer to the solute-only potential vmol(r) as the “vacuum
potential” since it only consists of terms that describe the solute
molecule(s) in vacuum.

For a chosen thermodynamic state (e.g., with a fixed number
of atoms N, volume V , and temperature T in a canonical ensem-
ble), the equilibrium probability density p(r, w) for a solute–solvent
configuration r, w is

p(r, w) =
e−βv(r,w)

∫ dr ∫ dw e−βv(r,w) , (2)

where the scaling factor β depends on the thermodynamic ensem-
ble used. In the canonical (NVT) ensemble at temperature T, it is
given by β ∶= 1/(kBT) with the Boltzmann constant kB. The distri-
bution p(r, w) can be sampled as a whole by MD or Monte Carlo
simulations with the explicit solvent potential v(r, w).

For implicit solvent models, we are interested in recovering a
potential that describes the distribution of the solute molecules only.
The density associated with this potential is formed as the marginal
density obtained by integrating over the solvent degrees of freedom,

P(r) ∶= ∫ dw p(r, w). (3)

We seek a potential function of solute coordinates V(r) that could
generate the marginal distribution P(r). In other words, the poten-
tial V(r) should satisfy the following equation:

e−βV(r)

∫ dr e−βV(r) = P(r). (4)

By inserting Eqs. (2) and (3) and solving for V(r), we have

V(r) = −β−1 ln[∫ dw e−βv(r,w)
] + const. (5)

V(r) is the so-called solute PMF69,70 because its force corresponds
to the mean force on the solute coordinates,

F(r) ∶= −∇rV(r) = ⟨fr(r, w)⟩r, (6)

where

fr(r, w) ∶= [−
∂v

∂r1
, ⋅ ⋅ ⋅ ,−

∂v

∂rN
]

T
(7)

denotes the forces on solute coordinates r with the solvent confor-
mation being w and

⟨⋅⟩r ∶= ∫ dw ⋅ p(r, w)

is a marginal operator that averages over all solvent configura-
tions consistent with a given solute configuration according to the
Boltzmann distribution p(r, w).

Theoretically, if we have V(r) as defined in Eq. (5) in the first
place, then we can directly sample P(r) as in Eq. (3) and analyze
most biologically relevant processes, where solvent coordinates can
be ignored (e.g., protein folding, protein–ligand binding, or, in gen-
eral, any observable defined by a function of the solute conforma-
tions only).70 However, in most cases, we cannot solve the integral
in Eq. (5) analytically.

Alternatively, one can try to construct an approximation to the
exact PMF, which is usually determined by first fixing a range of can-
didates with fixed functional forms {V(r;Θ)} and then optimizing
the parameterΘ. An often adopted decomposition in the parameter-
ization is to separate the vacuum potential from the solvent–solvent
and the solute–solvent interactions. Applying Eq. (1) to Eq. (5), we
can move vmol(r) out of the integral and thus

V(r) = vmol(r) + Vsolv(r), (8)

in which the solvation free energy V solv is defined as a function of
solute configuration,

Vsolv(r) ∶= −β
−1 ln[∫ dw e−β[vw(w)+vmw(r,w)]

] + const. (9)

Since the vacuum potential vmol(r) is known a priori from the all-
atom force field, we can write any candidate for approximating the
solute PMF V(r) in the following form:

V(r;Θ) ∶= vmol(r) + Vsolv(r;Θ), (10)

and optimizing V(r;Θ) is equivalent to finding the best approxima-
tion V solv(r;Θ∗) to the solvation free energy as defined in Eq. (9).
V solv(r;Θ∗) is an implicit solvent model since it does not explic-
itly involve any solvent but can be used to approximately sample
the Boltzmann distribution of solute conformations by taking into
account the solvent environment implicitly according to Eq. (4).

B. Traditional implicit solvent models
A widely used strategy for parameterizing implicit solvent mod-

els is to decompose the solvation free energy [Eq. (9)] into two terms:
the non-polar Vnp

solv and the electrostatic (polar) Velec
solv contributions,

Vsolv(r) = Vnp
solv(r) + Velec

solv(r), (11)
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and seek approximations for both terms separately (details can be
found in Ref. 70). Various models have been developed based on
generalization of simple physical models and/or heuristics71–73 for
each of the two terms.

Here, we illustrate Eq. (11) through an example of the popular
generalized Born models.71–73 As the name suggests, these models
employ an approximation to the electrostatics by generalizing the
Born model74 for charged spherical particles (e.g., simple ions),

Velec
solv,GB =

1
2
(

1
ϵout
−

1
ϵin
)∑

i,j

qiqj

fij
(12a)

in which fij =

¿
Á
ÁÀr2

ij + BiBj exp(−
rij

4BiBj
), (12b)

where ϵout and ϵin are the outer and inner (regarding the general-
ized Born sphere) dielectric constants, respectively. Parameters {qi},
{rij}, and {Bi} denote the atomic partial charges, the pairwise dis-
tances, and the generalized Born radii, respectively.75,76 The non-
polar contributions are typically represented by a linear function of
the solvent-accessible surface area (SASA) that is used to represent
the non-polar term

Vnp
solv,SA = γA(r) (+Vnp

0 ), (13)

in which γ is a model parameter with the unit of surface tension and
A(r) denotes the surface area associated with the solute configu-
ration r (sometimes, a predetermined offset Vnp

0 is also used).77,78

Generalized Born models together with a SASA-based non-polar
treatment form the so-called GBSA models, although other variants
of non-polar terms also exist.70,75 The authors of Ref. 75 provided a
useful review for the development and commonly used variants of
generalized Born models.

C. Implicit solvent model from a coarse graining
point of view

We put forward an alternative way for finding an approxima-
tion to the solute PMF [Eq. (4)] by adapting the multi-scale coarse
graining theory, which enables us to directly optimize a candidate
implicit solvent model against the conformations and corresponding
forces from explicit solvent simulations. Similar ideas have success-
fully been applied to models of lipid bilayers79 and ionic solutions80

under the name of solvent-free coarse graining, but not to complex
polymer systems, such as peptide and proteins.

The multi-scale coarse graining theory was developed for
parameterizing potential functions for a CG system obtained
through a linear CG mapping that satisfies some general require-
ments (e.g., one atom cannot be assigned to more than one CG
bead).51,52 Since detailed derivations can be found in Ref. 52, here,
we focus on its implications for the implicit solvation problem.

Consider a CG mapping Ξ that treats each solute atom in a
system as a “CG particle,”

r = Ξ
⎡
⎢
⎢
⎢
⎢
⎢
⎣

r

w

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, Ξ =
⎡
⎢
⎢
⎢
⎢
⎢
⎣

INmol

0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (14)

where this linear transformation essentially truncates the coordi-
nates by eliminating the solvent degrees of freedom. It is straight-
forward to show that the CG system defined by the mapping Ξ can
be treated under the multi-scale coarse graining framework, and the
solute PMF defined by Eq. (4) is a CG PMF with thermodynamic
consistency.52 Moreover, the mean force, F(r), acting on the solute
[as derived in Eq. (6)] is a CG mean force.

More than merely a change in the notation, treating the implicit
solvent system as a CG system of the explicit, one enables us to
apply the variational FM method for parameterizing an implicit
solvent model. For each candidate potential function V(r;Θ), the
multi-scale coarse graining functional52 is defined as

χ[Θ] ∶=
1

3Nmol
⟨∥fr(r) +∇rV(r;Θ)∥2

⟩, (15)

where fr is defined in Eq. (7), ∥⋅∥ is the Frobenius norm, and
the bracket ⟨⋅⟩ indicates an average over a Boltzmann distribu-
tion of fine-grained configurations (r, w). The multi-scale coarse
graining theory states that the global minimum of this functional
is unique (up to a constant) and corresponds to the CG PMF
V(r), when the space of all possible functions is considered.52

Furthermore, within a given family of functions parameterized as
{V(r;Θ)}, one can variationally optimize the approximation by
minimizing χ[Θ].

Specifically for an implicit solvent model V solv(r;Θ), the multi-
scale coarse graining functional can be rewritten in the following
form (implicit solvent functional) with the vacuum force fmol(r)
= −∇rUmol:

χ[Θ] =
1

3Nmol
⟨∥fr − fmol +∇rVsolv(r;Θ)∥2

⟩. (16)

D. Machine learning of a CG model and of an implicit
solvent model

Consider the parameterization of a CG force field: we usually
choose a specific form of potential energy functions {V(r;Θ)} with
trainable parameters Θ and then try to assign suitable parameters
Θ∗ such that the model acquires desired accuracy for representing
the system of interest. The function form can be either simple (e.g.,
Go-models) or complex (e.g., expressed by neural networks). The
performance assessment, i.e., the criteria for a good model, can vary
depending on the actual problem. However, after we fix the func-
tional form and the criterion (or a finite set of criteria) to assess the
“suitability” of a given model, the parameterization procedure fits
into the category of supervised machine learning. In other words,
we can approximate the CG PMF by numerically optimizing the
trainable parameters Θ.

In the context of multi-scale coarse graining, the criterion is
the functional defined in Eq. (15). Although its value usually can-
not be directly computed analytically, we can use a data-driven
approximation in the minimization procedure,

χ[Θ] ≈ L[{ri},{fi};Θ] =
1

3NM

M

∑
i=1
∥fi +∇rV(ri;Θ)∥2, (17)

which averages over a batch of CG coordinates {ri} (M frames) and
corresponding instantaneous forces {fi} after CG mapping sampled
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from the thermodynamic equilibrium of the fine-grained system.
L[{ri},{fi};Θ] in Eq. (17) is often referred to as CG-FM error due
to its mean-squared-difference form52,81 and may serve as a loss
function in the numerical optimization of Θ.

The CGnet method,46 for example, expresses the candidate CG
potential as an artificial neural network82 based on molecular fea-
tures, such as pairwise distances, the angles, and dihedral angles
formed by the CG particles. Since this potential is fully determined
by the neural network parameters, the optimization of the can-
didate function is equivalent to standard neural network training
in a supervised learning problem. Within this general framework,
an improved version—CGSchNet—has been developed by using
a more sophisticated graph neural network instead of multi-layer
perceptrons (see Subsection II E for details).48

Similarly, from the implicit solvent functional [Eq. (16)], we can
construct the implicit solvent FM loss function,

L[{ri},{fi};Θ] =
1

3NM

M

∑
i=1
∥fi − fmol(ri) +∇rVsolv(ri;Θ)∥2, (18)

where the {ri} and {fi} are the coordinates and forces for the solute
from an equilibrated explicit solvent sample and fmol for the vacuum
force as defined in Eq. (16). An implicit solvent potential Vsolv(ri;Θ)
can thus be learned for a given molecular system using a given
optimizable model (e.g., a neural network).

E. The ISSNet architecture
We construct a specific artificial neural network architecture for

the deep learning of an implicit solvent model—ISSNet (a shorthand
for implicit solvent SchNet). Figure 2(a) illustrates the architecture
of the ISSNet with the left and right columns corresponding to the
vacuum potential vmol(r) and the solvation energy V solv(r;Θ∗) as
in Eq. (10), respectively. The vacuum potential and forces in the
lime-colored box come directly from the all-atom force field and
are thus irrelevant to the training process. On the right-hand side,

the core of ISSNet is an energy network, which can be regarded
as a function that receives all-atom 3D coordinates r of the solute
molecule(s) and returns a single energy scalar V solv(r;Θ). The func-
tional relation between V solv and r is determined by the neural net-
work and its trainable parameters Θ. When the functional relation
meets certain smooth requirements, it immediately provides a force
field F = −∇rV solv(r;Θ) for MD simulation.

We follow the CGSchNet architecture48 and employ SchNet61

to express V solv . SchNet is a type of graph neural network for molec-
ular systems.61 It maps each atom (or CG particle in CGSchNet48)
to a node in a graph, and we can subsequently define edges for
node pairs based on the proximity in the 3D space. When we use
a uniform distance cutoff and use a shared sub-neural network to
generate the edge information, the graph representation will enable
the SchNet to learn of molecular representations while enforcing
the translational and rotational symmetries of molecular potentials.
Furthermore, as stated in Ref. 48, it lays a foundation for model
transferability across different molecular systems (see also Sec. IV).

Figure 2(b) shows the data flow in a SchNet:61 a starting fea-
ture vector (i.e., the embedding) h0

i is generated for each node. Each
interaction block updates the atomistic feature {hk

i } to {hk+1
i } by

summarizing the information on the neighboring nodes through
continuous-filter convolution (cfconv). By stacking multiple (NIB)
interaction blocks, information can be propagated farther among the
nodes to express longer-ranged and/or sophisticated interactions.
Afterward, a post-processing sub-network maps the feature {hNIB

i } on
each atom/bead into a scalar atomistic energy. Finally, the energy
contributions from each atom are summed up to produce the total
energy prediction, which in our case is used to express the implicit
solvent potential Vsolv(ri;Θ).

The generation of embedding vectors for the system is an
important step to incorporate useful chemical and physical informa-
tion that we know a priori for each atom. In this work, we use three
variants of ISSNet for parameterizing an implicit solvent potential
[shown in Fig. 2(b)]:

FIG. 2. Schematic representations of the ISSNet: (a) overall architecture and (b) the detailed structure of the neural network.
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1. The first variant (denoted as “t-ISSNet”) follows the original
SchNet scheme, i.e., distinguishing the atoms by their nuclear
charges.61 In this case, only the information about element-
types {ti} is used. This vector comprises the nuclear charge
for each solute atom, thus using a unique natural number to
denote each element. The embedding for the ith atom h0

i is
taken from the tith row of a trainable matrix A: h0

i = Ati .
2. The second (“q-ISSNet”) is inspired by the generalized Born

models, which entail not only a parameter specified by the
atom type but also include the atomic partial charge from the
force field in the potential expression. In practice, we encode
the partial charge (divided by the elementary charge unit) qi
of each atom into a vector,

e(qi) = Dense–Net(RBF(qi;μ, γ)),

in which the Dense–Net is a dense neural network, the radial
basis function (RBF) vector is defined as

RBF(q;μ, γ) = [e−γ(q−μk)
2

]
⊺

, (19)

with the entries in μ ∈ RNc uniformly placed over the range
[−1, 1] (covering all possible partial charge value for atoms
in amino acids), and Nc, γ are the hyperparameters. Based
on this newly introduced embedding function e(⋅) and par-
tial charge information {qi}, we use charge embedding e(qi)

instead of the atomic-type embedding as in “t-ISSNet” as the
initial feature.

3. The third (“qt-ISSNet”) is a mixture of the above variants.
Both the type and charge embeddings are calculated and then
concatenated into a mixed feature vector for each atom. Note
that the sub-vectors Ati and e(qi) have only half of the nor-
mal length of the above two embeddings such that the output
vector still keeps the same width.

Once the embedding is generated, each atom receives a starting
feature vector. The interaction blocks then perform continuous-
filter convolution (cfconv) over the feature vectors.61 The distance
between each neighboring node pair i and j is expanded in a RBF
vector [defined in Eq. (19)], which is, in turn, featurized into a
“continuous filter” by a dense network,

eij = Dense–Net(RBF(∣ri − rj∣;μd, γd)), (20)

where γd and μd ∈ RNRBF are the pre-selected hyperparameters. For
each node i, the cfconv is performed upon the feature vectors,

yl
j ↦∑

j
eij ⊙ yl

j, (21)

where⊙ denotes elementwise multiplication. In addition, dense net-
works [also known as atomwise layers in Ref. 61 and in Fig. 2(b)]
with trainable weights and biases act on the feature vectors before
and after the cfconv operation, which gives additional functional
expressivity to the transformation of feature vectors. To avoid van-
ishing gradients, the output of the lth interaction block is summed
with the input {hl

i} following a residual network scheme. Putting
them all together, the update in the lth interaction block can be
expressed as

hl+1
i = hl

i +AWl
post

⎡
⎢
⎢
⎢
⎢
⎣

∑
j

eij ⊙AWl
pre(h

l
j)

⎤
⎥
⎥
⎥
⎥
⎦

, (22)

where AW’s are the atomwise layers.
Apart from the variants of embedding generations, there are

other hyperparameters for an ISSNet model. Examples include the
width of the feature vectors W, the number of interaction blocks NIB,
and the number and distribution of RBF centers μ⃗d. Hyperparame-
ters have to be fixed before training a certain model, but the choice
can be optimized through cross validation.

F. Training, validation, and simulation
with an ISSNet model

Given an ISSNet and the implicit solvent FM loss function
[Eq. (18)], we follow the typical training procedure for a super-
vised deep-learning problem,53,83 which is also used for CGnet46 and
CGSchNet.48

1. Separate the available data (recorded in equilibrium sampling
of an explicit solvent system) into training and validation sets.

2. Repeat for a fixed number of epochs:

(a) Randomly shuffle the solute coordinates and corre-
sponding forces {(ri, fi)} for training.

(b) Split the training data into small batches with a pre-
determined size M.

(c) For each batch, the following steps have to be
performed:

i. Evaluate the FM loss L[{ri},{fi};Θ] on the batch.
ii. Update the model parameters Θ by applying

a stochastic gradient descent method (e.g., the
Adam optimizer84).

(d) Evaluate the FM loss on the validation set.

We choose suitable hyperparameters for our models based on cross
validation: we divide the dataset into four equal parts after shuffling.
Then, we conduct four rounds of independent model training with
the same setup, each round with a different fold serving as the valida-
tion set and the other three as the training set. The cross-validation
force matching (CV-FM) error is calculated by averaging validation
errors from the four training processes, which is considered as a
reliable benchmark of the chosen hyperparameter set.46,48 For exam-
ple, in Ref. 46, it was shown that this error corresponded well to
the free energy difference metrics after sampling with trained CG
models. Therefore, we performed hyperparameter searches by com-
paring the CV-FM errors among a series of hyperparameters (see the
supplementary material, Sec. B).

Trained ISSNet models can be used for implicit solvent sim-
ulations. We perform such simulations with the MD simulation
library OpenMM85 and a plugin for incorporating a PyTorch model
as the force field:86 evaluate the forces from both the neural net-
work V solv(r;Θ∗) and the vacuum potentials Vmol at each time
step and then perform simulation with the resultant force on the
solute molecule. Section A of the supplementary material describes
the simulation setup, which resembles that of the explicit solvent
simulation for the generation of training datasets. For a review of
the basic MD concepts and conventions, we refer the readers to
comprehensive reviews, such as Refs. 11 and 13.
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For an accurate evaluation of the thermodynamics of implicit
solvent systems, we need to sample sufficiently many conforma-
tions according to the Boltzmann distribution. In this study, we
achieve this by aggregating multiple long MD trajectories. We lever-
age batch-evaluation of neural network forces by simulating with
several replicas of the same system in parallel, which significantly
reduces the time needed to achieve a long cumulative simulation
time for our test molecular systems. Similar strategies have been
used to obtain the converged thermodynamics of coarse grained sys-
tems with CGnet/CGSchNet.46,48 We also incorporate PT-MD87,88

as an enhanced sampling method89,90 so as to assist transitions
among metastable states for the chignolin system. Implementation
of a general-purpose tool for batch simulations with optional PT
exchanges can be found in Ref. 91.

III. RESULTS
To assess the usability and performance of our neural-network-

based implicit solvent method, we train models for two molecular
systems—capped alanine and chignolin—and use the trained mod-
els in implicit solvent simulations. These two systems were also used
as examples and benchmarks for CGnet and CGSchNet.46,48 We then
compare the free energy landscapes implied by the output trajectory
from the reference all-atom simulation, implicit solvent simulations
with our model, and those with a widely used GBSA model.68 The
comparison shows that our model outperforms the classical model
in terms of recovering the thermodynamics of explicitly solvated
systems.

A. Capped alanine
Capped alanine, also known as alanine “dipeptide,” has two

essential degrees of freedom: the torsion angles ϕ (C–N–Cα–C)
and ψ (N–Cα–C–N).92–95 Consisting of only 22 atoms, it is a sim-
ple yet meaningful system in many studies, e.g., conformational
analyses,45,92,96 free energy surface calculations,92–95 and solvation
effects.94,95,97 Here, we expect a good implicit solvent model to repro-
duce the conformational density distribution in a simulation of
capped alanine on the ϕ − ψ plane (i.e., a Ramachandran map) as
given by the explicit solvent simulations.

To prepare a dataset for model training and validation, we per-
formed a 1-μs all-atom molecular dynamics simulation of a capped
alanine molecule with the TIP3P explicit solvent model (see the
supplementary material, Sec. A). The conformations and corre-
sponding instantaneous all-atom forces on the solute (capped ala-
nine) atoms were collected every picosecond to form the dataset,
forming a dataset with 106 samples. We randomly shuffle the col-
lected coordinate-force pairs and divide them to fourfolds of equal
sizes.

We train and validate ISSNet implicit solvent models for
capped alanine on the prepared dataset with the FM scheme intro-
duced in Sec. II. The training and validation processes (see the
detailed setup in the supplementary material, Sec. B) of our ISSNet
solvent models are comparable to those of a standard CGnet46 or
CGSchNet.48 Essentially, we set aside onefold of the available data
for validation and mix the data from the rest threefolds for training.
We also performed fourfold cross validations for sets of hyperpa-
rameters (listed in Table S2) to observe how they affect the learning
and prediction of the solvation mean force. By comparing the mean

CV-FM errors for each condition (see Fig. S1 of the supplementary
material), we conclude that the force prediction accuracy of trained
models is, in general, robust to most hyperparameter settings (com-
parable to the findings in Ref. 48). The only hyperparameter that
significantly influenced the CV-FM error was the embedding: type-
only (t-), charge-only (q-), or type-and-charge (qt-), among which
the partial charge-only variant (q-ISSNet) produced the lowest
CV-FM error. We selected the model with the lowest validation FM
error for each embedding setup in the cross-validation processes for
further analyses.

We perform simulations of the capped alanine system with each
trained implicit solvent model to examine its performance. In order
to accumulate enough samples in the conformational space in a rela-
tively short time, we performed simulations in the batch mode start-
ing from 96 conformations. The starting structures were sampled
from the all-atom simulation trajectory based on the equilibrium
distribution, which was, in turn, estimated by a Markov State Model
(MSM)98 with the PyEMMA software package.99,100 The full setup
for implicit solvent simulations can be found in the supplemen-
tary material, Sec. A. In addition, we ran implicit solvent simulation
with a traditional GBSA model for comparison. We used the default
model (GBSA–OBC) provided by the OpenMM suite85 for AMBER
force fields,26 which is based on the work of Onufriev et al.68 The
same set of Boltzmann-distributed starting structures was used in
batch simulations to ensure the comparability of the results across
different solvent models.

By comparing the free energy landscapes with those from the
reference explicitly solvated and vacuum systems, we can assess how
well the implicit solvent model can approximate the solvent effects
on thermodynamics. Figure 3 shows the free energy surfaces for the
implicit solvent, reference explicit solvent, and vacuum systems. The
free energy plots for systems with trained t-ISSNet and qt-ISSNet
models can be found in Sec. S2 of the supplementary material. Qual-
itatively, the free energy landscapes of the implicit solvent simula-
tions [Figs. 3(b) and 3(c)] are dramatically different from the vac-
uum case [Fig. 3(d)] and recover the main energy minima emerging
in the explicit solvent simulation [Fig. 3(a)]. The sample proportion
in these regions in implicit solvent simulations also appears simi-
lar to the distribution for the explicit solvent system, both on the
2D free energy landscapes and on the marginal distributions for
ϕ and ψ. The result proves that either of the two implicit solvent
models can properly model the solvent effect, which is absent in the
vacuum simulation. Between the implicit solvent systems (with our
trained neural network model and with the GBSA–OBC model), it is
observed that the q-ISSNet model corresponds to a free energy con-
tour that better resembles the explicit solvent reference. The other
two variants of ISSNet models, although give slightly less accurate
free energy landscapes, still outperform the GBSA–OBC model (see
Fig. S2 of the supplementary material).

The difference between implicit solvent models can be bet-
ter analyzed by directly comparing the discretized equilibrium dis-
tributions (i.e., the histograms) on the dihedral plane, which we
used to generate the free energy contours above. We evaluate
the Kullback–Leibler (KL) and Jensen–Shannon (JS) divergences
between the distributions of various models and those of the ref-
erence distribution as well as the mean-squared error (MSE) of dis-
crete free energies. Table I presents these quantitative metrics for
measuring the similarity of the free energy landscapes between the
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FIG. 3. Two- and one-dimensional free energy plots for all-atom capped alanine systems: (a) explicit solvent system with the TIP3P water model (reference), the implicit
solvent setup with (b) trained q-ISSNet and (c) the GBSA–OBC model, and (d) the vacuum system without solvation treatment (used as a negative control). The 2D free
energy surfaces are created by histogramming of simulation trajectories on ϕ- and ψ-dihedral angles with MSM-reweighting, while the two one-dimensional free energy
curves (bold lines) below each contour plot show the corresponding marginal distributions. For a clear comparison of the one-dimensional distributions between the reference
system and the rest, we let the shaded regions represent the explicit solvent result.

implicit solvent and the baseline vacuum system with the refer-
ence explicit solvent case. All three columns give the same trend:
ISSNet implicit solvent models have the smallest; vacuum energies
have the largest errors, with the GBSA–OBC implicit solvent model
in between. This is consistent with the visual comparison of the free
energy surfaces in Fig. 3 and indicates that our machine-learned
implicit solvent method outperforms the traditional GBSA–OBC
model for this system. Additionally, the q-ISSNet variant (with

TABLE I. KL divergence, JS divergence, and MSE of free energy for comparing
the discrete conformational distributions on the ϕ − ψ plane of the implicit solvent,
vacuum, and the explicit solvent systems for capped alanine. Calculation is per-
formed over the simulation trajectories after MSM-reweighting (see the details in the
supplementary material, Sec. C). The bold font is designated for the lowest diver-
gence/error values, which correspond to the implicit solvent model with ISSNet plus
partial charge-only (q-) embeddings.

System DKL
a
/10−2 DJS/10−3 MSEb

/10−2

Explicit solvent (0) (0) (0)
t-ISSNet 2.32 5.62 8.28
q-ISSNetc 1.46 3.63 7.64
qt-ISSNet 5.61 13.4 9.44
GBSA–OBC 9.47 23.4 19.2
Vacuum 169 530 250
aCalculated in exactly the same manner as in Ref. 48 and thus comparable to the KL
divergence values reported there.
bUnit: (kcal/mol)2 ; calculation is done in the same manner as in Ref. 48.
cUsed for comparison with reference systems in Fig. 3.

charge-only embedding) corresponds to the smallest difference from
the reference among the ISSNet models.

B. Chignolin
Due to their small size and short folding time, the artificially

designed miniprotein chignolin101 and its stabler variant CLN02567

are widely used as example systems in both experimental67,102 and
computational investigations103–106 of protein folding and kinet-
ics. Additionally, thanks to the availability of extensive reference
data from experiments,67 chignolin variants serve as benchmark
systems in the development of all-atom force fields107–109 and for
comparison among force fields110 and solvent methods.17 In this
section, we use the CLN025 variant67 of chignolin, a 10-amino-acid
miniprotein with sequence YYDPETGTWY (together with N- and
C-terminal caps) as the solute molecule, which is referred to sim-
ply as chignolin in the text below. The explicit solvent all-atom
simulation trajectories (available online111) and corresponding force
data were provided by the authors of Ref. 46. The simulation setup
is reported in the supplementary material, Sec. A. We randomly
selected 2 × 105 coordinate-solvation force pairs from the aggregated
dataset (with 1.8 × 106 pairs in total) according to the equilibrium
conformational distribution estimated by a MSM for training and
validation of ISSNet models and divide them to fourfolds of equal
sizes.

The training and cross-validation procedures for chignolin are
similar to those for capped alanine with slightly modified setups
(see Sec. B of the supplementary material). In addition to the
embedding choices, the number of interaction blocks also appears
to be influential to the CV-FM errors in hyperparameter searches
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(see Table S3). Therefore, we trained the ISSNet models with the
three different types of embeddings and two or three interaction
blocks, resulting in six implicit solvent models for the next step.

We performed vacuum and implicit solvent simulations for
chignolin (the latter with the trained ISSNet models), similar to
those for capped alanine. In order to facilitate transitions among
metastable states and thus a more accurate estimate of the state
population with multiple short-time simulations, we applied paral-
lel tempering (PT) methods in the MD simulations. We also per-
formed a simulation with the GBSA–OBC model and compared the
outcome with those corresponding to the ISSNet models. All sim-
ulations were initiated from the same 16 starting structures, while
they were sampled from the with MSM weights. More information
regarding the simulation setups can be found in the supplementary
material, Sec. A.

In order to visualize the conformational distribution, we per-
formed time-lagged independent component analysis (TICA)112,113

on the explicit solvent trajectories according to Ref. 48 (over the pair-
wise Cα distances)48 and used the resulting TICA matrix to project
the simulation results for each model onto the same set of collec-
tive coordinates. The first two time-lagged independent components
(TICs) resolve the three metastable states (see Fig. 4; cf. figures in
Ref. 48). Furthermore, a MSM is estimated on the explicit solvent
simulation data to obtain the correct weights for each frame in the
trajectories such that we can more precisely estimate the free energy
landscape at equilibrium by histogramming (also used for capped
alanine). Free energy estimates for other systems in the compari-
son does not require MSM-reweighting since a sufficient and correct
sampling from the Boltzmann distribution is obtained by means of

the PT simulation. Apart from the change in coordinates, the plot-
ting procedure (see Sec. C of the supplementary material) is the same
as described for capped alanine.

Figure 4 displays the equilibrium free energy landscapes for
two ISSNet models and the reference systems we introduced above.
For the convenience of description, we label the three major min-
ima on the free energy landscape in Fig. 4(a) as “misfolded” (upper),
“unfolded” (lower left), and “folded” (lower right) according to the
folding status of the peptide conformations in these minima. These
minima correspond to metastable states from MSM analyses48 (for
details, see the supplementary material, Sec. D). By comparing the
2D free energy plots in Fig. 4, we can qualitatively conclude that the
three metastable states are present at the correct positions for all the
presented implicit solvent systems [Figs. 4(b)–4(d)], although the
misfolded state is rarely visited in the GBSA–OBC system. Mean-
while, the vacuum system has an extremely rugged free energy
landscape mostly located in the unfolded region [Fig. 4(e)]. This
shows that the implicit solvent models incorporate non-trival sol-
vent effects that are absent from the vacuum system. Another obser-
vation is that the ISSNet models better reproduce the populations
of the folded and misfolded states, which are underestimated by
the GBSA–OBC model. As a side note, a similar deficiency in the
folded state population for chignolin has been reported and analyzed
for simulation with an AMBER force field26 and the GBSA–OBC
model.114

In Fig. 5, we visualize some representative 3D structures of
chignolin sampled from the simulation trajectories. We randomly
pick ten structures that were assigned to different metastable states
on the TIC1–TIC2 plot (for details, see the supplementary material,

FIG. 4. Two- and one-dimensional free energy plots for all-atom chignolin systems: (a) explicit solvent system with the mTIP3P water model (reference); the implicit solvent
setup with (b) trained q-ISSNet, (c) trained qt-ISSNet, and (d) the GBSA–OBC model; and (e) the vacuum system without solvation treatment (negative control group). The
2D free energy surfaces are created by histogramming of simulation trajectories on the first and second TICs after TICA transformation. For the explicit solvent dataset, a
MSM is estimated upon the short simulation trajectories and then used for reweighting in the histogram. For simulation with ISSNet models or the vacuum simulation, we use
PT-MD to increase state-transition rates. The two one-dimensional free energy curves (bold lines) below each contour plot show the corresponding marginal distributions.
For a clear comparison of the one-dimensional distributions between the reference system and the rest, the shaded regions represent the explicit solvent result from
column a.
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FIG. 5. Representative structures of chignolin from explicit and implicit solvent simulations from (a) the folded, (b) the misfolded, and (c) the unfolded metastable states. We
overlay ten structures randomly sampled from each metastable state for each solvent model (cf. Fig. 4) and visualize their backbone structures. We highlight one structure
in each plot and plot its side chains in addition.

Sec. S4) and only plot the backbone atoms for clarity. We randomly
pick one from the ten structures for the explicit solvent reference
to highlight, while for the implicit solvent structures, we highlight
the one with the lowest RMSD to the explicit solvent reference. It
is clear that for each metastable state, the structures are comparable
between systems with explicit and implicit solvent models. Compar-
ing structures from the folded and misfolded states [Figs. 5(a) and
5(b)] with the GBSA–OBC model and with ISSNet models, the local
displacements across the overlayed structures from the latter are less
apparent than from the former. This phenomenon corresponds to
the fact that these states are correctly stabilized by the ISSNet models
[cf. Figs. 4(b) and 4(c)].

We quantified the comparisons between the conformational
distributions of the explicit solvent systems and the different implicit
solvent models with the criteria introduced for 2D free energy sur-
faces (see Sec. C of the supplementary material). Table II shows
that implicit solvent simulations with the ISSNet models result in
lower divergences/errors with respect to the reference explicit sol-
vent model comparing to the one with the GBSA–OBC model, indi-
cating that ISSNet can better reproduce the thermodynamics of a
solvated chignolin system.

As for the effect of hyperparameter choices, we examined the
CV-FM error and the quantified differences in the free energy sur-
faces (Table II). The parameters that lead to significant differences
are the number of interaction blocks and the embedding strategies.
Although adding a third interaction block to the models generally
results with comparable or even smaller CV-FM errors (see Table
S3 of the supplementary material), except for the type-embedding

ISSNet, this change does not improve the accuracy according to
the three metrics. (This observation is contradictory to the claim
of Ref. 46.) When other hyperparameters are held constant, using
the partial charge embedding (q-) alone results in the lowest MSE
of free energy, but mixed embedding (qt-) leads to the best results
according to the two divergence criteria.

TABLE II. KL divergence, JS divergence, and MSE of free energy for comparing the
thermodynamics of the implicit solvent, vacuum, and the explicit solvent systems for
chignolin. The metrics were evaluated based on discrete conformational distributions
on the TIC 1–TIC 2 plane as estimated from the simulation trajectories. In the case
of explicit solvent dataset, MSM-reweighting is performed. The bold font designates
the lowest divergence/error values, which correspond to the implicit solvent model
with ISSNet plus charge-only (q-) or type-and-charge (qt-) embeddings [cf. Figs. 4(b)
and 4(c)].

System DKL DJS MSEa

Explicit solvent (0) (0) (0)
t-ISSNetb 2.671/0.494 0.724/0.117 4.438/1.017
q-ISSNeta 0.221/0.366 0.053/0.086 0.432/0.526
qt-ISSNeta 0.069/0.321 0.016/0.076 0.468/0.541
GBSA–OBC 1.720 0.404 0.892
Vacuum 2.647 0.726 1.815

aUnit: (kcal/mol)2 .
bThe former and latter values on these lines denote the metric values for corresponding
implicit solvent systems with two and three interaction blocks in the SchNet architecture
(see Sec. II E), respectively.
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One of the major discrepancies in the implicit solvation meth-
ods in Fig. 4 is the relative population of the metastable states. Espe-
cially in the GBSA–OBC case, the unfolded state of chignolin is
over-stabilized. We hypothesize that this behavior is mainly caused
by an inaccurately predicted melting temperature Tm, which is the
temperature at which the molecule is found to be folded or unfolded
with equal probability in equilibrium.115,116

The melting temperature is defined as the temperature at which
the molecule is found with equal probability in either the folded
or the unfolded states. This temperature is connected to the zero-
crossing of the unfolding free energy change ΔG(T) since

ΔG(T) = −β−1 log
punfolded(T)
pfolded(T)

. (23)

Therefore, we can model the temperature dependency of ΔG from
the sample distributions for the replicas at different temperatures in
the PT simulations and then solve for Tm. We utilize the two mod-
els from Ref. 117 for ΔG − T relationship and try to determine the
parameters by curve fitting. It is straightforward to directly work on
the ΔG − T plot, but the ΔG estimation from the simulations has too
large uncertainty when either punfolded or pfolded is too low. Instead,
we calculate and plot the relative unfolding ratio from the raw data
(i.e., the solid dots in Fig. 6),

f (T) =
punfolded

pfolded + punfolded
=

1
1 + exp[βΔG(T)]

, (24)

and we estimate the model parameters by a least-square curve fit-
ting. The resulted ΔG − T models give the solid curves in Fig. 6,
which match the observations from the raw data. Then, we calcu-
lated the temperature corresponding toΔG = 0 [i.e., when the curves
cross the f (T) = 0.5 line in Fig. 6] as an estimation of Tm (see Sec.
E of the supplementary material for details). The resulting Tm for
implicit solvent simulation with the ISSNet models and with the
GBSA model are listed in Table III. We also include a reference Tm
for explicit solvent simulation with the same force field and water

FIG. 6. Relative unfolding ratio f(T) for different solvent models. Here, we use
the constant-heat-capacity model for curve fitting. The dashed lines imply the
estimated melting temperatures for each cases. The crosses visualize Tms from
explicit solvent simulation105 and experiments,67 which serve as references.

TABLE III. Estimated folding Tm of chignolin with different solvent models in MD
simulations and experimental reference value.

Solvation model for simulation Tm (K)

Explicit solvent105 381(361–393)
q-ISSNeta

∼368/∼370b

qt-ISSNeta
∼355/∼355b

GBSA–OBCc
∼268/∼269b

Experimental67 ∼343
aModel with two interaction blocks.
bThe former and latter numbers are estimated by assuming constant enthalpy and
entropy changes or constant-heat-capacity, respectively. See Sec. E of the supplementary
material for details.
cEstimated from six replicas at 250.0, 274.6, 301.7, 331.4, 364.1, and 400.0 K in a PT
simulation. It can be compared with the results in Ref. 17.

model from Ref. 105 (calculated with a different approach; see the
details in the supplementary material, Sec. E). This analysis shows
that the traditional GBSA model dramatically underestimates Tm,
while our neural network ISSNet models result in rather accurate
melting temperatures that are bracketed by the explicit solvent and
experimental observations (labeled in Fig. 6 as crosses). Note that
our models were fitted at one single temperature and can thus not
generally expected to make quantitative predictions at other temper-
atures. However, the good match observed in this case is a piece of
evidence that the ISSNet method can learn the qualitatively correct
physics.

IV. DISCUSSION
Here, we provide some physical interpretation for some choices

in our implementation and experiments and discuss remaining
challenges that call for further investigations.

We leverage an enhanced sampling method for the estimate
of the free energy landscape for chignolin simulation with trained
ISSNet models. Although chignolin is usually regarded as a “fast-
folder,”67,102 transitions among the metastable states, e.g., between
the folded and unfolded states, are rather slow comparing to our
simulation timescale. As a reference, the all-atom explicit solvent
folding and unfolding timescales for chignolin in the NVT ensemble
at 343 K are reported to be 0.6 and 2.4 μs, respectively,105 which are
several times longer than our simulation time. In fact, the generation
of our explicit solvent reference dataset was also obtained by means
of an enhanced sampling method,46 and we reweighted the dataset
according to a MSM analysis in order to gain the ground truth of
the Boltzmann distribution. For assessing implicit solvent models,
we use the PT-MD to enable a rather accurate equilibrium sampling
within short simulation time, as it speeds up the state transitions
without modifying the thermodynamics at equilibrium.20,21

The ISSNet approach employs a (CG)SchNet architecture with
slight modification for expressing the solvation free energy. In both
examples, we found that embeddings (q- and qt-) involving par-
tial atomic charge led to higher accuracy in the recovered ther-
modynamics than a traditional embedding (t-) solely based on
the identification of the atom type (see Tables I and II). This
result underscores the importance of including electrostatic infor-
mation in the network for accurate solvent modeling. It is known
that electrostatic interactions are vital for modeling solvent effects
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for both explicit and implicit models.11,15,16,71,73 Although partial
atomic charges can be learned and predicted by SchNet61 or other
networks118,119 from merely the element-type embedding, such pre-
dictions tend to require a deep network with more interaction blocks
and a variety of input molecules. Our results suggest that it is neither
accurate nor efficient for an implicit solvent model to learn the elec-
trostatics from scratch. We hypothesize that the new atomic embed-
ding strategy may strengthen the performance and/or reduce the
computational cost for some other SchNet-based molecular machine
learning approaches, such as CGSchNet.

Although our ISSNet models appear more accurate than the
reference methods, they are not free of limitations. Regarding the
chignolin results, we observe that the metastable states are not
exactly weighted, and the free energy surface for the misfolded and
unfolded metastable states slightly differs from the reference. In
order to tackle these problems, we experimented with different train-
ing setups, such as training set composition (e.g., distribution of
training data on the space spanned by the first two TICs) and hyper-
parameters for SchNet architectures. We observed different simula-
tion outcomes with resulting models [e.g., Figs. 4(b) and 4(c) and
Table II], but we do not yet have an ultimate solution to consis-
tently and systematically improve the accuracy of the free energy
landscape.

We note that the CV-FM error is used to assess the models
and to optimize the hyperparameters in both Refs. 46 and 48. In
this work, however, we found that—at least for the ISSNet models
for chignolin—there is no strict correspondence between the low-
est CV-FM error and the highest accuracy (e.g., comparing models
with different numbers of interaction blocks and embedding meth-
ods for chignolin; see Sec. S2 in the supplementary material). We
hypothesize that FM error on a limited dataset may fail to assess the
global accuracy of free energy surfaces for complex systems. High-
energy regions—including transition paths—constitute only a tiny
proportion of the training and validation data because their Boltz-
mann probability is exponentially lower than those of major energy
minima. Therefore, an erroneous prediction of the mean force in
these regions does not strongly affect the overall FM loss. Never-
theless, it can cause differences in the height of energy barriers to
the metastable states, resulting in an inaccurate relative free energy
difference and thus a wrong weighting of free energy minima. This
hypothesis also has implications on the model training and hyper-
parameter optimizations because both of them rely on only the FM
error but not the energy or distribution weights. In this sense, com-
bining the variational FM method with alternative CG schemes (e.g.,
relative entropy120,121) may systematically improve the accuracy of
related machine learning methods.

Another aspect to be improved for the ISSNet models is the
speed of simulation (see the supplementary material, Sec. F). Because
the forces from the neural network are required for every time
step, simulations become computationally demanding and time-
consuming, restricting the application of the current ISSNet model
to longer simulations and larger molecules. In this work, we par-
tially avoided this problem by evaluating the ISSNet forces in batch,
which speeds up the sampling but not single simulations. While this
work presents an important feasibility study, future developments
will involve reducing the frequency of neural network evaluation
(e.g., by multiple time step MD simulation), lowering communi-
cation overhead between the MD software and the deep-learning

framework as well as finding computationally cheaper energy neural
networks in substitution for SchNet.61

To illustrate the advantage of the ISSNet approach, we com-
pared it to GBSA–OBC,68 an existing widely used implicit sol-
vent model. This choice is due to the availability in simulation
tools, such as AMBER26 and OpenMM.85 Additionally, a recent
study assures the qualitative similarity between GBSA–OBC and
a newer GBNeck2 model122 for the implicit solvation of chignolin
(CLN025).114 However, given the wealth of existing implicit solvent
methods, we cannot conclude that the ISSNet models trained herein
reflect the state of the art for the accuracy of thermodynamics. Nev-
ertheless, due to the variational nature of the formulation, given
sufficient training data and a sufficiently competent neural network,
our model shall be able to reproduce the thermodynamics of a given
explicit solvent model with arbitrarily high accuracy.

Despite its success, an ISSNet model is at the moment only
parameterized for a given molecular system at a fixed thermody-
namic state. Even when a model successfully learns the free energy
surface specific to the given system, it is not guaranteed to out-
put sensible solvation forces for systems at a different tempera-
ture/pressure and/or consisting of other solute molecules. Although
we achieved an accurate estimation of the unfolding temperature
Tm by the ISSNet models, it may merely be due to the fact that
the simulation temperature for the dataset generation is close to
Tm. In fact, we observed that the empirical thermodynamic param-
eters (e.g., the enthalpy and entropy changes) from curve fitting
for chignolin unfolding in implicit solvents are different from the
experimental and explicit solvent results, thus leading to a signifi-
cant deviation of the folded population at other temperatures (see
the supplementary material, Sec. E). Therefore, a proper modeling
of the temperature/pressure dependence of the free energy surface is
yet to be developed.

Another potential of the future development of the ISSNet
method is to achieve the transferability among a larger variety of
solute molecules. Since the (CG)SchNet architecture allows the same
set of parameters to be shared among models for different sys-
tems,48,61 it is, in principle, feasible to optimize ISSNet models for
a more general description of the solvent effects. Note that a vari-
ety of systems may also provide information for correctly treating
the conformations that are under-sampled in the case of a sin-
gle training system, thus beneficial to the accuracy in free energy
modeling at the same time. By training on extended datasets (e.g.,
a set of peptides or proteins) and potentially incorporating more
insights from statistical physics, we may train more transferable yet
accurate solvation models and widen the application of the ISSNet
approach.

V. CONCLUSIONS
In this work, we have reformulated the implicit solvation

modeling as a bottom-up coarse graining problem and shown
that an accurate implicit solvent model can be machine-learned
by leveraging the variational FM approach. Based on the CGnet46

and CGSchNet48 methods established for machine learning of CG
potentials, we develop ISSNet for learning an implicit solvent model
from explicit solvent simulation data. Our method outperforms the
GBSA–OBC model68—a widely used implicit solvent method—on
two biomolecular benchmark systems (capped alanine and
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chignolin) in terms of accuracy. Our novel method sets up a stage
for utilizing the power of machine learning to the implicit solvent
problem, and we expect further development on the transferability
among thermodynamic states and chemical space to widen its
application.

SUPPLEMENTARY MATERIAL

Detailed setups for model training and simulation, as well as
procedures for various analyses that are referred to in the main text,
can be found in the online supplementary material.
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